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Abstract. We study the Wess-Zumino model with the coupling extended to a chiral superfield. In order to
incorporate the renormalization effects a further external real field has to be introduced. It is then possible
to derive a Callan-Symanzik equation and to prove renormalizability. By constructing the supercurrent in
this context the whole machinery for describing the superconformal symmetries becomes available. The
presence of the external fields allows also to define multiple insertions of all relevant composite operators.
Interesting relations to the curved superspace treatment show up.

1 Introduction

The non-renormalization of chiral vertices has been a key
issue in supersymmetric theories from the very first mo-
ment when one looked at the renormalization problem. At
the beginning it was seen in explicit component calcula-
tions [1] and then automatically realized when perform-
ing perturbation theory in terms of superfields [2–4]. The
puzzling point has always been that the supersymmetry
Ward identities (WI) did not require them to hold, but the
supersymmetric structure of the integrands – maintained
when working with supergraphs – ensured them.

A deeper understanding has been achieved only re-
cently [5] using two ingredients: (1) rendering the coupling
local causes flow of external momentum through every in-
ternal line of a diagram and thus makes the integrand
accessible to operations “from the outside”; it also opens
the way to the lowest θ component of a vertex which has
lower dimension than the highest one. (2) observing and
exploiting the fact that an integrated vertex is always a
susy variation and thus carries momentum factors. Quite
a number of results have been obtained meanwhile which
clearly show that this new insight is fruitful [6–8]. This
refers in particular to susy gauge theories formulated in
the Wess-Zumino gauge where these non-renormalization
theorems would not be available in any other way than by
falling over them in explicit calculations.

It is then obvious that one should study the effect of
local couplings also in the context of linear realization of
supersymmetry in terms of superfields and exploit the new
tool. Since in the past it has become evident at many in-
stances that the supercurrent is the carrier of the most
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important information on local structure in susy models
we formulate in the present paper the Wess-Zumino model
as an example of a chiral model with local coupling. We
derive the supercurrent in presence of a local coupling and
thus pave the way for the analysis of the whole supercon-
formal properties of the model. In particular we derive a
local and an integrated Callan-Symanzik equation which
completes the renormalizability proof in [5] when the cou-
pling is local.

The paper is organized as follows. In Sect. 2 we set
up global WI’s for two different R-symmetries and their
difference which plays a decisive role in the subsequent
construction. For it gives raise to a powerful local gauge
WI which in Sect. 3 is used to define the multiple in-
sertions of the composite operator AĀ which contains an
axial current as one of its components. It is essentially
this operator which is responsible for all renormalization
effects in the model. In Sect. 4 we derive the local and in-
tegrated Callan-Symanzik equation via the connection of
the dilatations with scaling of parameters carrying mass
dimension. In Sect. 5 we derive as an application some
properties of double insertions showing thereby the use-
fulness of the local coupling and the external field intro-
duced for handling the product AĀ. The connection to
the curved superspace treatment found in particular there
clearly indicates that our results are as scheme indepen-
dent as they can be when one is constructing currents and
the like explicitly. In the conclusions we discuss our find-
ings and give an outlook to further applications of the
local coupling.

2 Global Ward identities

Introducing a local coupling in the Wess-Zumino model
(A: chiral superfield)
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Γcl = 1
16

∫
d8z AĀ+

∫
d6z

(
m
8 A

2 + λ
48A

3)
+
∫
d6z̄

(
m
8 Ā

2 + λ
48 Ā

3) (2.1)

means promoting the real coupling constant λ to chiral
external fields Λ, Λ̄ such that one constructs Feynman
diagrams from

Γeff = 1
16

∫
d8z

∞∑
n=0

z(n)�n(ΛΛ̄)nAĀ

+
∫
d6z

(
m
8 A

2 + 1
48ΛA

3)+ ∫ d6z̄ (m
8 Ā

2 + 1
48 Λ̄Ā

3)
+ 1
8

∫
d8z

∞∑
n=1

ξ(n)�n+1(ΛΛ̄)n
(
(ΛA)2 + (Λ̄Ā)2

)
.

(2.2)

Due to the space-time dependence of Λ and Λ̄ every vertex
in a diagram receives external momentum in accordance
with the standard Feynman rules.

The usage of the above Γeff refers to renormalization
in the BPHZ scheme, which has been shown to be a super-
symmetric invariant scheme. Hence supersymmetric Ward
identities are maintained in the construction and super-
field expressions can be used throughout the paper.

The terms going with z(n), z(0) = 1 describe the ki-
netic term and terms which reduce to its counterterms
in the limit of constant coupling. Mass and interaction
terms have by prescription no counterterms. This implies
the non-renormalization of chiral vertices if renormaliza-
tion is possible with such a choice of Γeff . The terms going
with ξ(n) represent power counting admissible countert-
erms which vanish in the adiabatic limit. We have omit-
ted possible terms which are linear in the field A because
they do not play a role in what follows and the omission
is consistent with higher orders. Powers of Λ and Λ̄ are
assigned together with orders in � in such a way that a
R′-symmetry [9,5] is maintained naively

WR′
Γ ≡

(
−i
∫
d6z i(−1 + θα∂α)A

δ

δA

+i(1 + θα∂α)Λ
δ

δΛ
− c.c.

)
Γ = 0 (2.3)

The validity of this WI guarantees already the non-renor-
malization of chiral vertices.

An important member of the superconformal symme-
try is yet another R-symmetry: there the fields have the
so called conformal weights. For constant coupling it is al-
ways only softly broken. For local coupling it is again only
softly broken

WRΓ ≡
(

−i
∫
d6z i(− 23 + θα∂α)A

δ

δA

+iθα∂αΛ
δ

δΛ
− c.c.

)
Γ

= m
12

[∫
d6z A2 −

∫
d6z̄ Ā2

]
3

· Γ, (2.4)

if the ξ(n) are appropriately chosen, as will be shown more
explicitly below. The coefficients z(n) can be fixed by the
usual normalization condition prescribing the wave func-
tion renormalization in the flat limit. It will turn out to
be useful to consider the difference of the above two R-
symmetries which is a global U(1) commuting with super-
symmetry:

W 3Γ ≡ (WR′ −WR)Γ

=
(∫

d6z
(

− 13A
δ

δA
+ Λ

δ

δΛ

)
− c.c.

)
Γ (2.5)

W 3Γ = − m
12

[∫
d6z A2 −

∫
d6z̄ Ā2

]
3

· Γ . (2.6)

One of the aims in the present paper is the derivation of
the Callan-Symanzik equation (CS) which in the adiabatic
limit (Λ = Λ̄ = λ) is known [10,11] to have the form(

m∂m + 2κ2∂κ2 + β∂λ − γN )Γ
= αm

8

[∫
d6z A2 +

∫
d6z̄ Ā2

]
3

· Γ (2.7)

with
β = 3γ , α = 1− 2γ . (2.8)

γ denotes the anomalous dimension which will be given
more explicitly below. κ2 is the normalization point where
the wave function counterterm is fixed. As long as the cou-
pling Λ is local one cannot express the effect of m∂m +
2κ2∂κ2 on Γ by other differential operators and a soft
mass insertion. Hence for local coupling one has to intro-
duce another external field L which is a real superfield
of dimension and R-weight zero and couples accordingly;
in particular it couples to the product AĀ and allows to
absorb the hard breaking of the CS equation into a field
operator (see also [6,12]). Since by dimensional analysis(

m∂m + 2κ2∂κ2

)
Γ = −iWDΓ , (2.9)

where

WD ≡ −i
∫
d4x

∑
φ

(d(φ) + x∂x)φ
δ

δφ
(2.10)

denotes the dilatations and furthermore a supersymmetric
extension of the latter can be constructed in a systematic
fashion [10,11] we go over to local Ward identities.

3 Local Ward identities

All subsequent considerations will be based on the follow-
ing Γeff .

Γeff = 1
16

∫
d8z

∞∑
n,m=0

z(n,m)
�

n(ΛΛ̄)nLmAĀ

+
(∫

d6z
(

m
8 A

2 + 1
48ΛA

3)+ c.c.

)
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+ 18

∫
d8z

( ∞∑
n,m=0

ξ(n,m)
�

n+1(ΛΛ̄)n

×Lm
(
(ΛA)2 + (Λ̄Ā)2

))
(3.1)

The systematic procedure for constructing all currents and
WI’s of the superconformal transformations alluded to
above (Chaps. 6 and 16 in [11]) starts with contact terms

wconfα = − 23Dα

(
A

δ

δA

)
+ 2DαA

δ

δA
+ 2DαΛ

δ

δΛ

− 2D̄2DαL
δ

δL
+ 2DαLD̄

2 δ

δL
(3.2)

which give rise e.g. via

Ŵ conf
R ≡

∫
d4x

(
Dαwconfα − D̄α̇w̄

conf α̇) (3.3)

to the conformal R-symmetry contact terms and those of
supersymmetry and translations

Ŵ conf
R = W conf

R + θαW susy
α + θ̄α̇W̄

susy α̇ + θσν θ̄WP
ν (3.4)

W susy
α ≡ −i

∫
d6z

∑
φ

δsusyα φ
δ

δφ
(3.5)

WP
ν ≡ −i

∫
d6z

∑
φ

∂νφ
δ

δφ

(φ ∈ {A, Ā, Λ, Λ̄, L}) (3.6)

Those of the R′-symmetry read

w′
α = −Dα

(
A

δ

δA

)
+ 2DαA

δ

δA

+Dα

(
Λ
δ

δΛ

)
+ 2DαΛ

δ

δΛ

−2D̄2DαL
δ

δL
+ 2DαLD̄

2 δ

δL
. (3.7)

The corresponding ones for the “3” transformations are in
a first step just the difference

w3α ≡ − 13Dα

(
A

δ

δA

)
+Dα

(
Λ
δ

δΛ

)
. (3.8)

But noting that they can be obtained by the application
of Dα to more elementary terms and further identifying
those as gauge transformations one is led to introduce

w3 ≡ − 13A
δ

δA
+ Λ

δ

δΛ
(3.9)

w̃3 ≡ w3 + 1
3D̄

2 δ

δL
. (3.10)

A quick check on

Γcl = 1
16

∫
d8z AeLĀ+

∫
d6z

(
m
8 A

2 + λ
48A

3)

+
∫
d6z̄

(
m
8 Ā

2 + λ
48 Ā

3) (3.11)

yields
w̃3Γcl = − m

12A
2 , (3.12)

i.e. a local WI where the current is absorbed by the inho-
mogeneous term of (3.10) and which is only broken by a
mass term. The contact terms w̃3 can be understood as a
building block for an axial transformation, w̃3 − ¯̃w3, but
of course also for all other elements of the superconformal
group which makes them extremely useful.

We shall now apply these WI operators to Γeff and
decompose the results as suggested by the supercurrent
treatment [10,11]:

−2wαΓ = ∆α · Γ (3.13)

∆α · Γ = D̄α̇Vαα̇ · Γ
+ 2DαS · Γ −Bα · Γ (3.14)(

Dαwα − D̄α̇w̄
α̇
)
Γ = −i∂µVµ · Γ

+
(
D2S − D̄2S̄

) · Γ (3.15)

where

Vµ ≡ σαα̇
µ Vαα̇ (3.16)

DαBα − D̄α̇B̄
α̇ = 0 . (3.17)

The decomposition (3.14) into current, S-type and B-type
breaking represents the most general situation. If a mass
term is present the best one can achieve is a soft mass
term plus breaking of S-type which means that all su-
perconformal anomalies can be represented in terms of
S. The supercurrent contains in this case a current for
a softly broken R-symmetry, strictly conserved supersym-
metry currents and a conserved energy-momentum tensor.
In the massless case one can have the B-type breaking
which implies that all components of the supercurrent are
strictly conserved currents and the breaking of superconr-
formal symmetry is described in terms of a real multiplet
B. In the present case we let mimic the R′-supercurrent
the situation with B-type breaking because the mass term
is R′-invariant. The S-type breaking is represented by the
“conformal” contact terms, current and breaking, whereas
the “3” interpolates between the two and will contain both
types of breaking. Parenthetically we remark that in the
curved superspace treatment this assignment arises auto-
matically.
Switching back and forth between R′ and Rconf and using
at appropriate places the information originating from w̃3

we shall be able to derive first a local and then a global CS
equation. These calculations become more involved than
in the classical approximation because in higher orders
the breaking going with the mass should be soft, hence one
needs first of all a Zimmermann identity relating the over-
subtracted mass term to the minimally subtracted one. It
reads

[mA2]3 · Γ = [mA2]2 · Γ +
∞∑

n=1,m=0

�
n
[
u
(n,m)
kin L

(n,m)
kin
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+ u
(n−1,m)
ξ L

(n−1,m)
ξ + u′

ξ
(n−1,m)

L′
ξ
(n−1,m)

]
3

· Γ +∆triv (3.18)

with

L
(n,m)
kin = D̄2

(
(ΛΛ̄)nLmAĀ

)
(3.19)

L
(n,m)
ξ = D̄2

(
(ΛΛ̄)nLm(ΛA)2

)
(3.20)

L′
ξ
(n,m) = D̄2

(
(ΛΛ̄)nLm(Λ̄Ā)2

)
(3.21)

Here,∆triv contains all terms with zero or one propagating
fields. These are trivial in the sense that they cannot con-
tribute to 1PI loop diagrams in the adiabatic limit and do
not affect the discussion of the non-trivial breaking terms.
In this paper we do not consider ∆triv, however one should
keep in mind that these terms contribute to Ward identi-
ties if tested w.r.t less than two dynamical fields.

Our first aim is the local gauge WI

w̃3Γ =
[
w̃3Γeff

]
3 · Γ (3.22)

w̃3Γ = − 1
12m

[
A2
]
2

· Γ +
[
1
16

∞∑
n,m=0

z(n,m)
�

n

×
{
(n− 1

3 )L
(n,m)
kin + m

3 L
(n,m−1)
kin

}

− 1
12

∞∑
n=1,m=0

u
(n,m)
kin �

nL
(n,m)
kin

]
3

· Γ

+

[
1
8

∞∑
n,m=0

ξ(n,m)
�

n+1
{
(n+ 4

3 )L
(n,m)
ξ

+m
3 L

(n,m−1)
ξ + nL′

ξ
(n,m) + m

3 L
′
ξ
(n,m−1)

}

− 1
12

∞∑
n=0,m=0

�
n+1

(
u
(n,m)
ξ L

(n,m)
ξ

+u′
ξ
(n,m)

L′
ξ
(n,m)

)]
3

· Γ (3.23)

We would like to dispose over the arbitrary coefficients
z(n,m) and ξ(n,m) in such a way that the r.h.s. of (3.23)
reduces to the soft term. If this is possible we are closest
to the classical situation as expressed by (3.12). We have
to solve the equations

3
4 (n− 1

3 )z
(n,m) + 1

4 (m+ 1)z(n,m+1) − u
(n,m)
kin = 0 (3.24)

3
2 (n+

4
3 )ξ

(n,m) + 1
2 (m+ 1)ξ(n,m+1) − u

(n,m)
ξ = 0 (3.25)

3
2nξ

(n,m) + 1
2 (m+ 1)ξ(n,m+1) − u′

ξ
(n,m) = 0 (3.26)

(3.24) with z(0,0) = 1 is readily solved by

z(0,m) =
1
m!

(3.27)

z(n,0) = arbitrary for n ≥ 1 (3.28)

(m+ 1)z(n,m+1) = (1− 3n)z(n,m) + 4u(n,m)
kin

for n ≥ 1,m ≥ 0 (3.29)

The difference of (3.26) and (3.25) determines

ξ(n,m) = 1
2 (u

(n,m)
ξ − u′

ξ
(n,m)) (3.30)

with ξ(0,0) = 0.
In order to show that (3.26), (3.25) hold also sepa-

rately, we consider the consistency condition

[w̃3(z), ¯̃w3(z′)] = 0 , (3.31)

which leads to

(n+ 4
3 )u

′
ξ
(n,m) + 1

3 (m+ 1)u′
ξ
(n,m+1)

= nu
(n,m)
ξ + 1

3 (m+ 1)u(n,m+1)
ξ . (3.32)

By inserting (3.32) into (3.30), one finds that both (3.26)
and (3.25) are satisfied.

Thus we have

w̃3Γ =
(
w3 + 1

3D̄
2 δ

δL

)
Γ

= − 1
12m[A

2]2 · Γ +Q3triv , (3.33)

i.e. also on the quantized level we have a gauge theory
with abelian gauge invariance which is only broken a soft
mass term. With (3.27) the respective classical action has
the form

Γcl = 1
16

∫
d8z AeLĀ+

∫
d6z

(
m
8 A

2 + λ
48A

3)
+
∫
d6z̄

(
m
8 Ā

2 + λ
48 Ā

3) (3.34)

The result (3.33) can be brought very simply into a
form where the machinery of forming moments is appli-
cable and thus the complete superconformal structure be-
comes available. We rewrite (3.33) as a trace equation.

w3α ≡ Dαw
3

= − 13DαD̄
2 δΓ

δL
− 1
12 [mDαA

2]5/2 · Γ (3.35)

−2w3αΓ = D̄α̇V 3αα̇ · Γ + 2DαS
3 · Γ −B3α · Γ (3.36)

V 3αα̇ ≡ 4
3 [Dα, D̄α̇]

δΓeff
δL

(3.37)

S3 ≡ − 1
12mA

2 (3.38)

B3α ≡ 2D̄2Dα
δΓeff
δL

(3.39)

δΓeff
δL

= 1
16

∞∑
n=0,m=1

z(n,m)
�

nmLm−1(ΛΛ̄)nAĀ

+ 1
8

∞∑
n=0,m=1

ξ(n,m)
�

n+1mLm−1(ΛΛ̄)n

× (Λ2A2 + Λ̄2Ā2) (3.40)

The next aim is now to derive the trace equation for the
conformal contact terms. Together with (3.36) it will con-
tain all information on the model. For the supercurrent
generated by the conformal R-symmetry we find

V confαα̇ = − 16
∑
n,m

z(n,m)
�

n
(
Lm(Dα(ΛnA)D̄α̇(Λ̄nĀ)
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− ΛnADαD̄α̇(Λ̄nĀ) + D̄α̇Dα(ΛnA)Λ̄nĀ)

+DαL
mΛnAD̄α̇(Λ̄nĀ)− D̄α̇L

mDα(ΛnA)Λ̄nĀ

+ ΛnAΛ̄nĀ(−mLm−1[Dα, D̄α̇]L

+m(m− 1)Lm−2DαLD̄α̇L)
)

− 1
3

∑
n,m

ξ(n,m)
�

n+1
(
Lm(Dα(Λn+2A2)D̄α̇(Λ̄n)

− Λn+2A2DαD̄α̇(Λ̄n) + D̄α̇Dα(Λn+2A2)Λ̄n)

+DαL
mΛn+2A2D̄α̇(Λ̄n)− D̄α̇L

mDα(Λn+2A2)Λ̄n

+ Λn+2A2Λ̄n(−mLm−1[Dα, D̄α̇]L

+m(m− 1)Lm−2DαLD̄α̇L) + c.c.
)

(3.41)

It is instructive to extract the classical approximation

V conf,classαα̇ = − 16eL
(
DαAD̄α̇Ā−ADαD̄α̇Ā+ D̄α̇DαAĀ

+DαLAD̄α̇Ā− D̄α̇LDαAĀ

− [Dα, D̄α̇]LAĀ+DαLD̄α̇LAĀ
)

(3.42)

and also to present the limit L = 0, Λ = Λ̄ = λ = const.

V limαα̇ = − 16z(DαAD̄α̇Ā−ADαD̄α̇Ā+ D̄α̇DαAĀ)

− 1
3ξ{Dα, D̄α̇}(A2 − Ā2) (3.43)

with

z =
∑

n

z(n,0)
�

nλ2n (3.44)

ξ =
∑

n

ξ(n,0)
�

n+1λ2n+2 (3.45)

ξ(n,0) = 1
2 (u

(n,0)
ξ − u′

ξ
(n,0)) (3.46)

We see that our construction yields a ξ contribution to the
supercurrent precisely as the curved superspace treatment
[13] does. Hence local coupling resolves the decomposition
ambiguity V ↔ S for these terms as the invariance re-
quirement with respect to diffeomorphism.

The other contributions to the trace equation

−2wconfα = D̄α̇V confαα̇ · Γ + 2DαS
conf · Γ −Bconfα · Γ (3.47)

turn out to be

Sconf = − 1
12m[A

2]2 − 1
12

[∑
n,m

u
(n,m)
kin �

nL
(n,m)
kin (3.48)

+
∑
n,m

1
2 (u

(n,m)
ξ + u′

ξ
(n,m))�n+1(L(n,m)

ξ + L′
ξ
(n,m))

]
3

Bconfα = 0 . (3.49)

4 The CS equation: local and integrated

The trace equation (3.47) leads via the moment construc-
tion to the local dilatation WI

WDΓ = ŴDΓ
∣∣∣
θ̃=0

(4.1)

ŴD =
∫
d4xwD (4.2)

wD = wP
trace + xνwP

ν (4.3)

wP
trace =

3
2 i
(
Dαwα + D̄α̇w̄

α̇
)

(4.4)

wP
ν = 1

16

(
−(D2D̄α̇wα + D̄2Dαw̄α̇)σαα̇

ν

− σββ̇
ν {Dβ , D̄β̇}(Dαwα − D̄α̇w̄

α̇)

+ 8i∂ν(Dαwα + D̄α̇w̄
α̇)
)

(4.5)

wDΓ = ∂µD̂µ · Γ − 3
2 i(D

2Sconf + D̄2S̄conf) · Γ (4.6)

A local CS equation is given by the equation

wP
traceΓ ≡ 3

2 i(D
αwα + D̄α̇w̄

α̇)Γ

= − 32 i(D2Sconf + D̄2S̄conf) · Γ (4.7)

(which incidentally explains the origin of the name “trace
equation” for (3.47)).

It is now crucial to observe that the hard terms in
Sconf can be represented by a local functional operator
which commutes with w̃3

Bloc ≡ 1
2

∞∑
r=1

γ(r)�rD̄2
{
(ΛΛ̄)re−3rL δ

δL

}
, (4.8)

acting on Γ , i.e.(
wP
trace + iD

2Bloc + iD̄2B̄loc
)
Γ

= i
8m[D

2A2 + D̄2Ā2]3 · Γ (4.9)

In order to prove this we first calculate

BlocΓeff =
∑
n,m

n∑
r=1

m∑
s=0

1
32
(−3r)s
s!

γ(r)z(n−r,m+1−s)

× (m+ 1− s)�nL
(n,m)
kin

+
∑
n,m

n∑
r=1

m∑
s=0

1
16
(−3r)s
s!

γ(r)ξ(n−r,m+1−s)

× (m+ 1− s)�n(L(n,m)
ξ + L′

ξ
(n,m)) (4.10)

This coincides with the hard terms in Sconf if

0 = u
(n,m)
kin + 1

4

n∑
r=1

m∑
s=0

(−3r)s
s!

γ(r)z(n−r,m+1−s)

× (m+ 1− s) ≡ q1(n,m) (4.11)

0 = u
(n,m)
ξ + u′

ξ
(n,m) +

n∑
r=1

m∑
s=0

(−3r)s
s!

γ(r)ξ(n−r,m+1−s)

× (m+ 1− s) ≡ q2(n,m) . (4.12)

By properly adjusting γ(r), q1(n, 0) can be made to vanish,

γ(1) = −4u(1,0)kin (4.13)

γ(n) = −4u(n,0)
kin −

n−1∑
r=1

γ(r)z(n−r,1) (n ≥ 2) (4.14)
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Before we show that the remaining q1, q2 vanish au-
tomatically, we pass over from (4.9) to the integrated CS
equation.

WDΓ + iBΓ = i
8m

[∫
d6z A2 +

∫
d6z̄ Ā2

]
3

· Γ , (4.15)

where B is the integrated version of Bloc,

B =
∫
d6z Bloc +

∫
d6z̄ B̄loc . (4.16)

Thus the integrated CS equation reads

CΓ = 1
8m

[∫
d6z A2 +

∫
d6z̄ Ā2

]
3

· Γ (4.17)

with the CS operator

C = m∂m + 2κ2∂κ2 + B . (4.18)

In order to finally prove (4.12), we consider the commu-
tator [C, w̃3(z)] = 0 . (4.19)

Since w̃3Γ = soft, this implies

w̃3(z) CΓ = soft . (4.20)

For the lowest non-vanishing order n this means

q1(n,m+ 1) =
3n− 1
m+ 1

q1(n,m) (4.21)

q2(n,m) = 0 . (4.22)

Since q1(n, 0) = 0 due to our choice of γ(r), this shows that
(4.11) and (4.12) hold, and we have thus established the
local and integrated CS equations (4.9), (4.17). Moreover,
the trace equation (3.47) may now be nicely expressed as

−2wconfα = D̄α̇V confαα̇ · Γ + 4
3DαBlocΓ

− 16m[DαA
2]5/2 · Γ . (4.23)

In order to make contact with the standard Wess-
Zumino model, we take the limit L = 0, Λ = Λ̄ = λ =
const. First we define

z =
∑

n

z(n,0)
�

nλ2n

ξ =
∑

n

ξ(n,0)
�

n+1λ2n+2 (4.24)

γ = − 12
∑

r

γ(r)�rλ2r

β = 3λγ (4.25)

z̃ =
∑

n

z(n,1)
�

nλ2n

ukin =
∑

n

u
(n,0)
kin �

nλ2n (4.26)

From (4.11), (3.29) we know that

γ =
2ukin
z̃

, z̃ = (1− 3
2λ∂λ)z + 4ukin , (4.27)

such that the standard form for γ is recovered,

γ =
2ukin

z + 4ukin − 3
2λ∂λz

. (4.28)

In the considered limit, the operator Bloc takes a simple
form,

Bloc → −γD̄2 δ
δL

. (4.29)

Taking into account the gauge WI (3.33), we find

BlocΓ → −γA δ

δA
Γ + β

δ

δΛ
Γ + 1

4γm[A
2]2 · Γ (4.30)

BΓ → (−γNA + β∂λ)Γ

+ 1
4γm

[∫
d6z A2 +

∫
d6z Ā2

]
3

· Γ , (4.31)

which reproduces the usual CS equation (2.7). The cru-
cial point is that in the Wess-Zumino model with local
coupling a Callan-Symanzik equation can be formulated
only with the help of an additional external field, but in
the limit of constant coupling this field couples just to the
coupling constant and wave function renormalization op-
erators. In our approach, the relation (4.25) between the
β and γ functions is a consequence of the gauge WI (3.33).

It is furthermore interesting to note that δ
δΛΓeff may

be interpreted as the λ-derivative of a Lagrangian density,

δΓeff
δΛ

∣∣∣∣
L=0
Λ=λ

= ∂λLeff (4.32)

Γeff | L=0
Λ=λ

=
∫
d6z Leff +

∫
d6z̄ L̄eff (4.33)

Leff ≡ 1
32zD̄

2(AĀ) + 1
48λA

3 + 1
8εD̄

2Ā2 (4.34)

ε ≡
∑

n

ξ(n,0)
�

n+1 n

2n+ 2
λ2n+2 , (4.35)

such that (4.23) reduces to

−2w(γ)α Γ = D̄α̇Vαα̇ · Γ + 4
3Dα(β∂λLeff)

·Γ − 1
6 (1− 2γ)mDα[A2]2 · Γ (4.36)

with the anomalous contact terms

w(γ)α ≡ wconfα − 2
3γDα(A

δ

δA
) . (4.37)

This result coincides with the flat space limit of the con-
struction of [13].

5 Application

The main reason to introduce a local coupling constant is
that it gives some new insight into the non-renormalization
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theorems of chiral vertices [5]. The present paper extends
the considerations of [5] in supplying the Callan-Symanzik
equations established in the previous section and thus
completing the proof of renormalizability for the model
under consideration. However, the external fields Λ and L
may also be used to generate insertions of local operators,

∆L ≡ δΓeff
δL

∣∣∣
L=0,Λ=λ

= 1
16AĀ+O(�) (5.1)

∆λ ≡ δΓeff
δΛ

∣∣∣
L=0,Λ=λ

= 1
48A

3 +O(�) . (5.2)

Since we are working with off-shell Ward identities, we
also have access to the covariance properties of these op-
erator insertions. For example, we find for the dilatational
transformation of the ∆L-insertion:

WD ([∆L] · Γ ) ∼ [δD∆L] · Γ + (−γNA + β∂λ + 3λ∂λγ)
×([∆L] · Γ ) (5.3)

with

δD∆L = (xµ∂µ + 1
2θ

α∂α − 1
2 θ̄α̇∂̄

α̇ + 2)∆L (5.4)

Here, WD represents only the transformation of the fields
A, Ā. ∼ means equality up to soft terms. Since ∆L con-
tains two dynamical fields, one might naively expect its
anomalous dimension to be 2γ. Instead we find that its
anomalous dimension is given by 3λ∂λγ.

The scaling behavior of ∆λ is given by

WD ([∆λ] · Γ ) ∼ [δD∆λ] · Γ + (−γNA + β∂λ + 3γ)

([∆λ] · Γ )− λ∂λγ[D̄2∆L] · Γ (5.5)

δD∆λ = (xµ∂µ + 1
2θ

α∂α − 1
2 θ̄α̇∂̄

α̇ + 3)∆λ (5.6)

Hence this operator indeed has the naive anomalous di-
mension 3γ, but dilatations do not close on ∆λ alone: the
operator ∆L is also involved here.

One can also produce multiple insertions of ∆λ, ∆L.
For example, it follows from (3.33) by differentiating w.r.t.
L and then taking the adiabatic limit that

λ〈{∆λ(z1) ·∆L(z2)}〉 ∼ − 13 〈{D̄2∆L(z1) ·∆L(z2)}〉
+ugeomD̄2✷δ8(z1 − z2) . (5.7)

The last term represents the only possible contribution
from ∆triv (3.18). ugeom is a power series in λ and �. For
the definition of double insertions, see [14]. Differentiation
of (3.33) w.r.t. Λ yields

λ〈{∆λ(z1) ·∆λ(z2)}〉 ∼ −13 〈{D̄2∆L(z1) ·∆λ(z2)}〉 , (5.8)
this time ∆triv does not contribute.

6 Conclusions

We have constructed the Wess-Zumino model with local
coupling represented by a chiral external field Λ and de-
rived the supercurrent in its presence. A further neces-
sary ingredient was an external real superfield L coupled

to the composite operator AĀ. From a merely technical
point of view it is this composite operator which causes all
renormalizations in the model once one has encoded the
fact that chiral vertices are not renormalized. The wave-
function renormalization and subsequently the anomalous
dimension of the chiral field A as well as the β-function
of the model can all be related to the effect of insert-
ing AĀ: certainly the most clear cut implementation of
the non-renormalization of chiral vertices and its conse-
quences. Speaking in equations the consequences are ex-
pressed by the local CS equation which was derived in the
context of the supercurrent with its moment construction
giving access to the entire superconformal group. Like in
the other examples of the local coupling approach it is an
axial current and its WI which plays the most decisive role
in the derivation of these results: the respective local WI
leads one to the interrelations of all potential anomaly
coefficients. The local coupling and the external field L
also serve the purpose of defining multiple insertions of
the respective composite operators A3 and AĀ including
their transformations under the superconformal group. It
is also interesting to observe that the local coupling ap-
proach yields some results which had been obtained pre-
viously by going to the curved superspace. Hence there is
a connection which deserves further study. This comment
also applies to the study of multiple insertions to which
we hope to come back in the near future. Summarizing we
may say that the introduction of a local coupling is with-
out any doubt the key to understand all renormalization
questions in the Wess-Zumino model.
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